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Abstract

A significant limitation for underwater robots is their ability to maneuver in tight
spaces or for complex tracking tasks. Next generation vehicles require thrusters that
can overcome this problem and efficiently provide high maneuverability at low speeds.
Recently, thruster design has begun to draw inspiration from nature’s swimmers, ap-
plying the principles of pulsed jet propulsion to robotic thrusters. Although most
developments have focused on single jet actuators, nature provides some indications
that multi-jet systems can provide propulsive benefits – marine invertebrates called
salps connect into chains of individual animals that each eject short jets to collab-
oratively move the entire chain efficiently around the ocean. However, despite the
promise of multi-jet propulsion, there are no existing models or empirical data that
explain the physics of multi-jet propulsion. As a result, there are no physically-
motivated rules to guide the design of man-made multi-jet thrusters.

In this thesis, I experimentally investigate how interactions between neighboring
jets in a multi-jet thruster will affect the system’s propulsive performance. I use
high-speed fluorescence imaging to investigate the mutual influence of two pulsed jets
under conditions relevant to low-speed maneuvering in a vehicle (Re ∼ 350). Using
a new force estimation technique developed in this thesis, I analyze the video data
to evaluate how thrust and efficiency are affected by the jet spacing. This analysis
reveals that, compared to non-interacting jets, the efficiency and thrust generated by
the pair of interacting jets can fall by nearly 10% as the jets are brought into close
proximity. Based on this data, I develop a model of vortex interactions to explain the
thrust and efficiency drop. The data and model described in this thesis contribute
new insights to understand vortex formation in pulsed jets, and these results can be
used to guide the design of multi-jet underwater propulsion systems.

Thesis Supervisor: Douglas P. Hart
Title: Professor of Mechanical Engineering
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Chapter 1

Introduction

One of the biggest challenges facing next generation underwater robots is effi-

cient maneuvering at low speeds; vehicle capabilities such as advanced sensing and

underwater rendezvous require precise position control and maneuverability. Such

maneuverability, in turn, requires that thrusters that can deliver specific impulses

rapidly and efficiently to the vehicle. Traditionally, underwater vehicles have been

driven by propellers because of their high propulsive efficiency and speed in tradi-

tional marine transport operations. However, it is unclear that propellers can provide

the necessary levels of thrust quantization, speed or efficiency required for precision

maneuvers. By their design, propellers serve a different purpose than is called for in

these delicate motion-control operations.

In these settings, pulsed jets are being increasingly used to augment vehicle maneu-

verability and improve efficiency at low-speeds. Pulsed jets offer many benefits over

traditional propeller propulsion, including more precise impulse delivery, more rapid

impulse delivery, and the ability to propel a vehicle using zero mass flux [1]. Pulsed

jets also offer opportunities for swarm propulsion - pulsed jets are observed in nature

for individual and group propulsion in species such as squid, jellyfish, siphonophores

and salps. For salps and siphonophores uniquely, individual animals form chains
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where each member can independently control its jetting behavior. By synchronizing

jet strength and timing, colonies of these animals can execute precise maneuvers and

can reach high speeds efficiently [2–5]. Taking inspiration from nature, pulsed jets

may prove to be an important technology for the development of scalable marine

robotic swarms.

Before pulsed jets can be used more widely for underwater vehicles, certain design

considerations must be addressed. To date, research efforts have focused on the thrust

characteristics of single pulsed jets. However, the interaction of multiple pulsed jets

is an important topic relevant to vehicle design and robot swarm control. For an

underwater vehicle to be well-actuated and controlled, it will likely require multiple

thrusters. The placement of these thrusters is a design decision that must account for

the interactions between nearby thrusters. Similarly, in a swarm setting where mul-

tiple individual vehicles are ejecting jets, like is the case for salps, the wake dynamics

and their interactions could have significant consequences for the thrust production

and efficiency of the group. In these situations, it is necessary to understand how jet

interactions will affect thrust production and efficiency for each of the jets.

In this thesis, I investigate this multi-jet interaction problem experimentally by

visually observing the wakes formed by two jets of diameter D separated by a distance

∆. I find that as the jets are brought together, ∆→ D, the thrust T and efficiency η

of each jet drop by nearly 10%. The thrust and efficiency fall off from the single-jet

values, T∞ and η∞, as

T (∆)

T∞
=
η(∆)

η∞
= 1− Co

(
D

∆

)6

,

where Co is a dimensionless “coupling number” that describes how strongly the two-

nozzle coupling affects thrust and efficiency. I develop scaling models to explain why

the thrust and efficiency fall off as ∆−6 based on the geometry of the problem and the
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pressure scales introduced by bringing two nozzles together. These models are used

to generate predictions that demonstrate strong agreement with the measured data.

The data presented in this thesis also reveal interesting implications for the general

dynamics of pulsed jet formation. My data contributes to a long-standing discussion

on the source of nozzle over-pressure in pulsed jets. Existing interpretations suggest

that pulsed jets generate more thrust than steady jets because of two factors: (1)

added mass effects, or ‘pushing off’ of the fluid behind the jet, and (2) entrainment

of ambient fluid into the forming vortex wake. While both of these factors certainly

contribute to the nozzle over-pressure associated with pulsed jets, my data indicates

that the entrainment of ambient fluid is responsible for over 85% of the measured

thrust generated in the regime of Reynolds number Re ∼ 350.

Finally, I discuss the implications of these results for underwater vehicle design

and for the field of pulsed jet propulsion. The data and models suggests interesting

possibilities for optimal behavior and even indicate the potential of thrust augmen-

tation if the jets are controlled cleverly.

The thesis is organized into 6 chapters, and 3 appendices:

• Chapter 1 (this chapter) introduces the problem and thesis organization.

• In Chapter 2, I summarize background material relevant to pulsed jet propulsion

and vortex interactions.

• In Chapter 3, I describe my experiment and the analysis framework used to

visually estimate forces from the wake of a pulsed jet.

• In Chapter 4, I present the results of these experiments.

• In Chapter 5, I discuss the results, develop models that predict and explain the

observed behavior, and discuss the implications of these models.

• In Chapter 6, I summarize the findings of this thesis and reiterate interesting

directions for future study.
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Chapter 2

Background

2.1 Thrust generation with pulsed jets

2.1.1 General Principles

Recent scientific interest in pulsed jet propulsion underwater dates back to 1977

when Weihs predicted that a continuous series of pulsed jets should provide more

thrust than an equivalent steady jet [6]. In his argument, Weihs observed that pulsed

jets roll up in to vortex rings that propagate downstream. Using the impulse asso-

ciated with the developed vortex rings, he concluded that the time averaged thrust

acting on the body can be higher than the thrust of an equivalent steady jet by a

factor related to the added mass of the formed vortex rings. This insight underlies

much of the understanding that has developed since - namely, ejecting a pulsed jet

produces a vortex, which generates more thrust than a steady jet because of the

higher impulse required to create the vortex ring.

Weihs’s argument was developed further by Krueger and Gharib, who explained

that the thrust boost associated with pulsed jets could be described by an increase

in pressure at the jet’s nozzle during early-time jet formation [7, 8]. Building off of

earlier vortex ring research and the results of Gharib et al. [9], Krueger observed that,

19



for a jet of diameter D with velocity uj, the impulse I delivered by a pulsed jet can be

broken up into two parts - an inertial term Iu traditionally associated with a steady

jet, and an ‘over-pressure’ term Ip:

I = Iu + Ip ≈ Antp(ρu
2
j + pn).

Here, An is the nozzle area, tp is the duration of the jet pulse, ρ is the density of water,

uj is the jet velocity, and pn is the ‘nozzle over-pressure’ associated with pulsed jet

formation [7, 8]. When the pulse duration does not exceed than the critical vortex

formation time t < Tf = 4D/uj, he observed that the pressure term Ip contributes

nearly half of the total impulse generated by the jet.

The origins of the over-pressure term can be traced to the complex dynamics

associated with vortex ring roll up and vorticity shedding from the nozzle into the

wake. For an intuitive understanding, consider that in a steady jet, the streamlines

run parallel and straight out of the nozzle, indicating no normal pressure gradient

∂p/∂n = 0. In this case, the pressure can be integrated radially from the jet out to

infinity, demonstrating that the pressure everywhere in the jet is given by the free-

stream pressure p0. If, however, the steady jet is replaced by the unsteady, pulsed jet,

then the streamlines will curve around the ejected vorticity, reflecting the vortex roll-

up dynamics. In this case, the curved streamlines indicate a nonzero normal pressure

gradient, suggesting that the nozzle pressure is not generally equal to the free-stream

pressure.

Explicitly, the relationship between flow curvature and nozzle overpressure was

expressed by Krueger based on a scaling of the terms in the momentum equation

[10]:

pn ≈ ρ

∫ D/2

0

uz
∂ur
∂z

∣∣∣
z=0

dr.

Here, D is the nozzle diameter, r is the radial coordinate, ur is the radial velocity
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field, and z is the axial coordinate with z = 0 representing the plane where fluid exits

the nozzle.

An alternate explanation for nozzle over-pressure in pulsed jets has been derived

based on the evolution of the vortical wake generated by the pulsed jet. Much like

the original argument of Weihs, the added mass of the vortex structure can be used

to describe the thrust benefit associated with nozzle over-pressure in a pulsed jet

[7, 8, 11, 12]. Such descriptions of nozzle over-pressure typically build upon a control

volume analysis to relate the nozzle over-pressure to forces required to generate the

motion and growth of the vortex itself. Given the shape and velocity of a vortex ring,

traditional added-mass calculations can be used to calculate the momentum flux that

was required to set such a structure in motion. This way, force measurements in

pulsed jets could be performed by measuring wake dynamics instead of measuring

the flow-field near the nozzle [11].

2.1.2 Factors that affect pulsed jet development

After the relationship was established between thrust augmentation in pulsed

jets, nozzle over-pressure, and vortex wake dynamics, research grew on how different

operating conditions and geometries alter the jet formation process and the associated

nozzle over-pressure. Following traditional vortex dynamics literature, many of these

studies focused on the production of circulation Γ under these different conditions,

and how these conditions alter the critical time-scale for vortex formation Tf [13, 14].

Because of the relationship between Γ and pn, changes in circulation also indicate

concomitant changes in thrust production [10].

One set of these studies demonstrated how different ambient conditions affect

vortex formation (and implicitly, the nozzle over-pressure and thrust production).

Krueger et al. demonstrated that for a pulsed jet immersed in steady co-flow (back-

ground flow parallel to the jetting direction), the total circulation production de-
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creases as the speed of the co-flow increases [13]. Then Dabiri and Gharib showed

that in the case of counter-flow (background flow anti -parallel to the jetting direc-

tion), the vortex formation time was increased, and was associated with increased

circulation in the vortex ring [14].

Another set of studies investigated how nozzle geometry and configuration alter

the production of circulation and thrust in pulsed jets. These studies have indicated

that circulation production can be controlled by changing, and even dynamically ma-

nipulating, the nozzle geometry [15–18]. Both Allen and Naitoh as well as Dabiri and

Gharib independently looked at the effects of temporal variations in nozzle diameter

during pulse ejection. These studies, which have relevance to biological propulsion

schemes, indicate that closing the nozzle during jet ejection is associated with an

increase in circulation, a decrease in vortex ring energy, and a decrease in mass trans-

port away from the nozzle [15, 16]. When the nozzle is opened continuously during

jet ejection, the vortex wake developed with a higher energy and no net change in cir-

culation [11]. In a computational study, Rosenfeld et al. demonstrated that by using

a nozzle with conical geometry instead of a straight tube, the rate that circulation

is delivered to the external flow could be increased by 20% [17]. Whereas previous

studies had considered axisymmetric nozzles, O’Farrell and Dabiri experimentally in-

vestigated the effect of using non-axisymmetric nozzles to eject a pulsed jet. Using

elliptical and oval-shaped nozzles, O’Farrell and Dabiri identified changes in the ar-

rangement of vorticity in the vortex ring cores, and also developed a framework to

explain how circulation production changes with nozzle shape [18].

Many further studies have characterized the behavior and performance of contin-

uously pulsed jets [7, 19, 20], which have been especially relevant for the development

marine thrusters [1, 21–26]. In this setting, thrust production and propulsive ef-

ficiency have been characterized as functions of system geometry, jet velocity, and

pulse frequency [22–24]. Additional studies have demonstrated the ability of multi-
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ple thrusters on a single vehicle to provide improved maneuverability for underwater

vehicles [1, 21].

In order to directly compare pulsed jet performance with traditional steady propul-

sion vehicles, Ruiz et al. developed an efficiency metric based on the vortex wake

behind a pulsed jet. Using a control volume approach, they related the thrust and

energy usage of the vehicle to the momentum and energy associated with the wake’s

motion and growth. When considered in a quasi-steady limit (rapid, continuous puls-

ing of the jet), this new efficiency metric is similar to Freud or rocket efficiencies, but

more appropriately accounts for the wake behind a pulsed jet. This new efficiency

metric suggests that creating vortex wakes with higher added-mass can increase ve-

hicle efficiency. Using experiments on a model vehicle, Ruiz et al. demonstrated that

the vehicle efficiency was 70% greater when propelled by pulsed jets than when pro-

pelled by steady jets [25]. Then, in follow-up experiments, Whittlesey and Dabiri

used the control volume analysis in conjunction with experimental data to relate the

efficiency gains to vortex ring characteristics in the wake. This study demonstrated

pulsing strategies that optimize vehicle efficiency [26].

Together, the results of experiments, design, and animal observation indicate how

different factors – including nozzle geometry, ambient flow, and active control – can

alter the vortex formation process during the development of a pulsed jet. As a

result of this altered formation process, the production of circulation and thrust are

modified from the behavior of an unperturbed circular jet. These previous results also

reveal how propulsive quantities such as thrust and efficiency relate to the properties

of the wake forming behind the pulsed jet. Finally, recent studies demonstrate how

the relationship between propulsive quantities and wake dynamics can be exploited

to calculate thrust and efficiency from measurements of wake dynamics.
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Aside: vortex propulsion and animal locomotion

Because pulsed jets have been observed as a natural behavior in marine animals

for quite some time, many recent developments in pulsed jet propulsion have been

closely tied to those in animal locomotion. The most commonly known animals

that exploit pulsed jets for locomotion include cuttlefish, squid [27–30], jellyfish [31–

35], siphonophores [5], sea squirts, pyrosomas, and salps [2–4]. The research tying

pulsed jet theory into animal locomotion has focused largely on efficiency, describing

techniques by which animals optimize behavior for different locomotion tasks. Of all of

the interesting behaviors described in the references above, salps stand out because of

how they cooperate for propulsion when individual individual jetting animals assemble

into chains [2–4]. Since they are an interesting example of multi-jet locomotion, salp

chains will be discussed in the context of my results in Chapter 5. For further details

on the topic animal pulsed-jet locomotion, the reader is directed to the references

listed above.

2.2 Vortex ring interactions

Since the problem of pulsed jet propulsion is intimately related to that of vortex

ring formation, it is likely that when two pulsed jets are brought together, their in-

teractions will be governed by interactions vortex rings. The problem of interacting

vortex rings is not new, having captivated the minds fluid dynamicists for well over

a century. Recent studies have demonstrated the qualitative behavior of multiple

vortex ring interactions [36–38]. Fohl and Turner forced two vortex rings to collide

at wide range of incident angles (θi = 10◦ − 60◦ separation), observing interactions

that are strongly angle-dependent. When the angle is large enough (θi > 30◦), the

collision results in a two-vortex structure propagating forward. Below the critical an-

gle, the collision typically produces a single-vortex structure [36]. Oshima and Asaka
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investigated two-ring interactions in the limit θi → 0, corresponding to two vortices

moving parallel to one another. Experiments in both air and water demonstrated that

in this limit, three merging behaviors emerge, depending on the Reynolds number of

the flow: (1) the two rings can merge and then separate again into two rings, (2) the

two rings can merge into a single ring, shedding two small vortices as it advances, or

(3) the two rings can merge into a single ring that oscillates as it advances [37, 38].

These qualitative behaviors were observed in my own early experiments as well.

Building off of the qualitative studies, later experiments provided insights into

the mechanisms involved in the vortex ring interactions [39–41]. Oshima and Izutsu

illustrated the importance of bridging and vorticity annihilation during the vortex

ring merging. Using measurements of vorticity, they demonstrated that are were

no instantaneous cut-and-reconnection events, but that instead the vortices connect

by ‘dissolving’ and ‘bridging’ gradually. These results indicate that the vortex core

thickness and curvature are important parameters that governed the merging pro-

cess [39]. Lim compared these previous merging results to experiments of a vortex

‘colliding’ with its own image by ejecting a vortex ring towards an inclined wall. He

observed that, as the vortex ring approaches the wall, significant secondary vortic-

ity is produced and a shear layer along the wall is rolled up into a vortex structure

that entangles part of the incident vortex ring. By contrast, his experiments with

colliding rings did not demonstrate production of secondary vorticity and instead

revealed strong mutual induction between the colliding rings along with significant

vortex stretching and vorticity annihilation around the point where the vortices merge.

These results indicate that the dynamics of two-ring interactions and connection are

strongly governed by vorticity dynamics, not simple potential flow models [40].

Most recently, experiments on vortex topology have provided closer looks at vortex

reconnection dynamics [41, 42]. Aref and Zawadzki used a topological framework to

look at reconnection dynamics during vortex ring interactions. Based on simulations
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of rings interacting in different geometries, they illustrated that vorticity annihilation

and local induction can lead to topological changes in the vortex structure, which are

associated with different flow properties, such as helicity [41].

This result has interesting implications, suggesting the topological structures gen-

erated in a vortical wake will affect different wake dynamics, potentially providing

different effects to propulsive or mixing properties. This idea can be further examined

in the context of the experimental results of Scheeler et al., who closely tracked the

core dynamics of vortex knots undergoing self-induced evolution. The topological evo-

lution of the vortex knots revealed that a global flow property, helicity, is conserved in

real fluids, illustrating how an understanding of reconnection dynamics can provide

insight into the production of global flow properties when complex vortex structures

are interacting [42]. It would be interesting to explore how topological descriptions of

vortex dynamics during pulsed jet formation can be exploited to design or optimize

thruster geometry for specific behavior.

So far, studies on vortex interactions have remained focused on times well beyond

initial vortex formation. It would be instructive and beneficial to extend some of

these studies to earlier times during formation, in order to better describe the vortex

formation process in more complex geometries.
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Chapter 3

Experimental Framework

In this chapter, I describe the experiment I designed to test the effect of nozzle

spacing on thrust production in a two-jet system. One point to keep in mind is that

the ultimate goal of these experiments is the relative behavior of 2-jet systems as the

spacing ∆ is varied. So although some of the approximations made in the analysis

may introduce systematic offsets from the true forces generated by the jets, I expect

this shift to be the same for all of the experiments so that the measured behavior still

robustly reflects the dependence of thrust on nozzle spacing.

3.1 Experimental apparatus

In order to understand the evolution of thrust and efficiency in a two-nozzle pulsed

jet, I imaged pulsed jet formation at early times, using the motion of fluorescent dye

in the wake to estimate hydrodynamic forces. The jets were created in a (30.4cm)3

cubic water tank using two D = 6.35mm inner-diameter stainless steel nozzles. The

nozzles were purchased with a slightly smaller bore which was machined out to the

final diameter. The outer diameter of the nozzles was 9.52mm, and the faces of the

nozzles were machined smooth and deburred, but were not tapered to a fine angle or

sharp edge as has been done in other experiments [8, 19, 43].
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Figure 3-1: Experimental setup. (a) Experiment schematic depicting all of the system compo-
nents. The side view reveals the illumination and imaging system, which images the jets from the
front. (b) Image of backlit nozzles revealing the field of view and geometry. (c) Typical fluorescence
image of the pulsed jet wake during an experiment.

The nozzles were mounted on a linear rail so that nozzle spacing could be var-

ied continuously. Flow through each nozzle was driven by an independent pressure

reservoir. For these experiments, the pressure reservoir was hydrostatic, consisting of

two 60mL syringes filled to capacity. During a typical experiment, the height of the

fluid in the reservoirs changed by less than 0.5mm, allowing me to ignore the height

changes in the hydrostatic pressure calculation over the course of an experiment. The

reservoirs were elevated L =570mm above the water surface for an expected pres-

sure head of ph = ρgL ≈ 5500Pa. However, as described below, losses between the

reservoir and the nozzle reduced the pressure head by an order of magnitude. The

reservoir was connected to the nozzle with 6.35mm Tygon tubing.

Between the reservoir and nozzles, additional hardware measured and controlled

the flow in the experiment. Volume flux was measured using a low-inertia, positive-

displacement flow meter (FCH-m-POM 97478039; BIO-TECH e.k.) placed inline

between the reservoir and the nozzle. Typical flow measurements are shown in Fig. 3-

2. An inline solenoid valve (CNYUXI 2W-025-08) controlled the flow. When open,

the valve constricted fluid flow to a 2mm diameter, setting the typical jet velocity uj
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to ∼50mm/s for a 0.3s pulse. Using the nozzle diameter as a length scale, the typical

jet Reynolds number is Re ≈ 350.

A schematic of the experimental setup is provided in Fig. 3-1. In this geometry, the

separation between the tank walls and the nozzle was typically 120mm, and the nozzle

exit plane was submerged 40mm below the free surface. With this configuration, edge-

effects should be negligible during the vortex formation, and the hydrostatic pressure

at the nozzle exit is pn,g = ρg(40mm) = 392Pa. Because of the pressure loss through

the tubing and valve, the effective driving pressure was estimated using a simplified

momentum equation for unsteady pipe flow:

pd − pn,g ≈
ρujL

t
= 114Pa.

Fig. 3-2 shows the volume flow Q through the nozzles, measured by the flow me-

ters. The flow meters are inline, positive-displacement sensors, so the initial reading

Q0 is not synchronized between the two sensors. The discrepancy in the initial state

results in the horizontal offset visible in the figure. Although the flow meters are
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Figure 3-2: Volume flux through the nozzle as measured by the flow meters attached to each
reservoir. The volume flow through the nozzles is approximately linear in time, so to calculate the
volume flow rate, the data for each nozzle are fit to a line. Here, the volume flow rate through each
nozzle is Q̇ = 1.68± 0.04mL/s.
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read at a frequency of 2kHz, the sensors do not register flow continuously. Instead,

they transmit pulses when a minimum volume has passed through them. Because

of this minimum volume constraint on the sensor, and the low flow rates in this ex-

periment, there are relatively few data points to define a flow profile. However, the

points accurately reflect the volume flux, and because of their linearity over the range

of the experiment, the volume flow rate Q̇ is calculated using a linear fit, as shown

in the figure. In this figure, the fit yields the same volume flow rate for each nozzle,

of Q̇ = 1.68 ± 0.04mL/s. Given the nozzle area, this flow rate corresponds to a jet

velocity of 53.20mm/s. Across all of the experiments at different nozzle spacings, I

did not observe any significant deviation in the jet velocities. All jet velocities fell

within the range 48.2-56.4 mm/s.

In order to follow the evolution of the developing jets, the reservoirs contained

water mixed with fluorescein dye (5× 10−7 M fluorescein sodium salt in water). This

way, all of the fluid ejected from the nozzle was marked with a fluorescent tracer,

while the fluid in the tank was transparent. The jets were illuminated with a blue

(462nm) laser diode module (1.5W optical power; Lasertack LDM-462-1400-C). The

laser module emits a 4mm-diameter gaussian beam that was expanded into a 4mm

thick laser sheet using a cylindrical lens. This laser sheet was centered on the nozzles

to illuminate the central plane of both jets, as depicted in Fig. 3-1.

When exposed to the blue laser sheet, fluorescein dye emits green light (532nm),

which was recorded at 400 frames/second using a high-speed camera (Phantom Miro

320s; Vision Research Inc.). This frame rate corresponds to a time resolution of

2.5ms.

To prevent scattered laser light from affecting the optical signal, a 495nm high-

pass optical filter (Thorlabs FGL495S) was placed in front of the camera as shown in

Fig. 3-1a.

The hardware was digitally controlled with a custom Python script that synchro-
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nized the valves, laser, and camera acquisition. The same script also read the flow

meter values continuously throughout the experiment. The computer interfaces with

the hardware using a high-accuracy data acquisition board (LabJack U6 Pro; LabJack

Corporation). Triggers were sent as +5V TTL pulses.

Each experiment lasted for 1 second. First, the camera and laser were triggered,

then the valves were opened providing a sudden pressure gradient to initiate the pipe

flow. After 0.3s, the valves were closed, and the flow was recorded until 1s had passed

from the start of the experiment. Finally, the tank was allowed to settle for 3 minutes

before the next experiment is performed. This ensured that no residual vorticity or

dye would impact the measurements of consecutive experiments.

Fig. 3-1c shows a typical image taken during pulsed jet development for the two-

nozzle configuration. A series of images spanning the whole pulse period is shown in

Fig. 3-3. When initially ejected, the unsteady and localized flow generates circulation

at the nozzle edges, creating a vortex ring that dominates the dynamics at early times

during jet ejection. The vortex ring is continuously fed momentum, circulation and

energy by the nozzle, and maintains an ellipsoidal structure at early times, when the

interactions are weaker. For the two-nozzle experiments, as the rings continued to

grow and interact more strongly, they deformed significantly from their ellipsoidal

structure, and evolved into more complex three-dimensional vortex structures.

t=0.06s t=0.10s t=0.15s t=0.19s t=0.24s

Figure 3-3: A sequence of images at different points in the jet’s early development. These frames
correspond to a single jet. Not only does the center of massmove as more fluid is ejected, but the
volume grows and the wake’s shape evolves with time. These frames are only a subset of a typical
experiment; for the full analysis, video data is acquired every 2.5ms.
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3.2 Derivation of thrust estimation technique

The thrust produced by an underwater jet can be calculated by measuring the

momentum flux through the nozzle. Surrounding the jet by a control volume (see

Fig. 3-4a for depiction of the control volume around a conceptual jet thruster), the

forward-thrust T (−ẑ) must be balanced by the inertial momentum transfer out of the

nozzle and the pressure on the nozzle exit plane. Assuming that the jet velocity and

pressure are roughly constant along the nozzle exit plane, I can integrate the momen-

tum equation around the thruster to recover an equation for the thrust produced by

the jet:

T =

∫
Sn

[
ρ(u · ẑ)2 + pn − p0

]
dA

≈ An(ρu2
j + pn − p0), (3.1)

where An is the nozzle area, ρ is the fluid density, uj is the fluid velocity exiting

the nozzle, pn is the pressure along the nozzle-exit plane, and p0 is the free-stream

pressure. In a steady jet, because the streamlines exiting the nozzle are straight,

there is no pressure gradient normal to the streamlines, and the the nozzle pressure

is identically the free-stream pressure so that pn− p0 = 0. However, because a pulsed

jet initially rolls up into a vortex ring, for early times the nozzle pressure is not equal

to the free-stream pressure, and this ‘nozzle over-pressure’ contributes significantly

to thrust production [7, 8].

Ideally, I would like to directly measure the thrust produced by the nozzles. How-

ever, because the forces are so small (∼ 10µN in my operating regime), this is not

a viable approach with existing load sensors. Another option would be to measure

the different components of the thrust (jet velocity and nozzle pressure). However,

there are few robust methods to non-invasively measure the pressure field in front of
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the nozzle, which is expected to contribute significantly to the thrust profile. Lacking

direct measurement options, I resort to an indirect method that allows me to estimate

the thrust produced by the jets.

This indirect approach can be derived analytically by using a second control vol-

ume, Ωcv, around the vortical wake (Figs. 3-4a and 3-4b schematically depict the

control volume geometry. A similar approach is taken by Ruiz et al. [25]). This

control volume encloses all of the fluid ejected from the nozzle, as well as any fluid

entrained into the vortex structures that form. Given this geometry, the leading region

within the control volume has been referred to as a “vortex bubble” [7, 8, 25, 43, 44].

The front of the vortex bubble is coincident with the material surface between fluid

nozzle pressure
nozzle 
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pressure 
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vortex bubble
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bubble 
surface
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Thruster 
Control 
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Nozzle, n

(a)

Figure 3-4: Estimating thrust based on wake evolution. (a) The control volumes around a model
vehicle and its vortical wake. The thrust experienced by the vehicle is balanced by the rate of
momentum change in the wake. (b) A detailed control volume Ωcv around the vortical wake. Two
surfaces contribute to the momentum in the ẑ direction: the nozzle exit surface (red), and the time-
varying material boundary between the wake and the external fluid (purple). The contributions
to the momentum must balance so that the momentum flux through the nozzle exit surface is
compensated by a mixture of control volume growth, motion, and pressure along the surface of
the nearly-ellipsoidal control volume. (c) Pressure distribution around an ellipsoid moving steadily
in the +ẑ (downward) direction. Red coloring indicates positive pressures, blue indicates negative
pressures, and white indicates zero pressure. Streamlines of the associated potential flow are drawn
in black. To estimate the ẑ− forces associated with this pressure distribution, I only integrate the
pressure distribution directly below the nozzle (where the pressure is greater than 0 and the ellipsoid
normal is primarily along ẑ.
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that was expelled from the nozzle, and fluid that started external to the jet. In ex-

periments, this material surface is easily visualized when dyed fluid is ejected into a

clear fluid, as shown in Figs. 3-1c and 3-3. Vortex roll-up during early jet formation

causes this material surface to resemble an oblate ellipsoid of revolution, enclosing

the forming vortex ring and most of the vorticity in the flow (some of the vorticity

diffuses beyond the extent of the material surface described above [43, 44]).

To calculate thrust given this control volume, consider the vertical (ẑ) momentum

conservation equation:

∂

∂t

∫
Ωcv

ρu · ẑ dV︸ ︷︷ ︸
term 1 - unsteady flow

+ ρ

∫
Svb

(u · ẑ)urel · n̂ dA︸ ︷︷ ︸
term 2 - fluid inertia

+

∫
Svb

(pvb + p0)n̂ · ẑ dA︸ ︷︷ ︸
term 3 - external pressure

−
∫
Sn

ρu2
j + pn dA︸ ︷︷ ︸

term 4 - momentum flux from nozzle

= 0 (3.2)

Here, the domain Ωcv represents the the entire control volume as highlighted in

Fig. 3-4b, Svb represents the control surface bounding the (roughly) ellipsoidal vortex

bubble, Sn represents the control surface at the nozzle exit plane, n̂ is the unit normal

at each point on the control surface, u is the local velocity at each point, and pvb is

the pressure on the surface of the vortex bubble.

To simplify Eq. 3.2, I make use of several empirical observations and assumptions.

Focusing first on the first term, I rewrite the integral in terms of the CV volume and

average CV velocity,

∂

∂t

∫
Ωcv

ρu · ẑ dV =
∂

∂t
(ρucvVcv).

ucv is the average velocity around the entire control volume. Given the axial symmetry

of the problem, this velocity should be purely in the ẑ-direction. While this equation

is exact, without a measurement of u at each point within the CV, it cannot be used.
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However, the average velocity ucv can be approximated as the average z-velocity of

the control volume center of mass, żcm.

Second, observe that on most of the control surface Svb, the surface evolves with

the fluid so that there is no velocity flux, and u · n̂ = 0 on Svb. Over the region of

Svb where entrained fluid enters the control volume, I assume that the entrainment is

nearly tangential so that even in this region, u · n̂ ≈ 0. This assumption is consistent

with empirical observations in similar experiments [25, 44]. Taken together, these

observations indicate that the second term of Eq. 3.2 is negligible.

Third, I separate the two pressures in the third term and note that integrating

the free-stream pressure around this control surface will cancel everywhere except for

directly below the nozzle. This allows the integral to be rewritten as

∫
Svb

p0n̂ · ẑ dA =

∫
Sn

p0 dA,

which can be combined with the fourth term of Eq. 3.2. This final step reveals the

modified fourth term as the thrust that is given in Eq. 3.1.

Leveraging these observations, and rearranging terms in Eq. 3.2, the thrust pro-

duced by the jet can be expressed in terms of the dynamics in the jet wake:

T = Anρu
2
j + Anpn

≈ ρu̇cvVcv︸ ︷︷ ︸
I

+ ρucvV̇cv︸ ︷︷ ︸
II

+

∫
Svb

pvb n̂ · ẑ dA︸ ︷︷ ︸
III

. (3.3)

A similar control volume approach has been used previously as an analytical ap-

proach to understand energy and thrust production in single pulsed-jet systems.

Krueger used such a model to relate his observations of thrust production to an

added mass effect and an additional pressure present at the nozzle exit plane [7, 8].
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Later, Dabiri expanded on the idea of using wake measurements to estimate swim-

ming forces [11, 12], and Ruiz et al. used a similar model to estimate the efficiency of

a continuously-pulsed jet [25].

The present formulation for jet thrust differs from previous formulations because

it relies on different measurable quantities. In previous formulations, momentum

equations have been cast into a form that allowed thrust to be calculated from vor-

ticity or velocity measurements. Building off of a different approach, I derived the

thrust formula in terms of the developing vortex bubble, which can be tracked using

fluorescent dye. For early times during vortex formation, it is experimentally easier to

track a region of fluorescent dye than it is to track particle motion near a nozzle exit.

I sought this representation to allow for more robust estimates at early times, which

is the operating regime relevant to motion- and orientation-controlling impulses in an

underwater vehicle.

Momentum conservation on the control volume (CV) surrounding the jet wake

(Eq. 3.3) reveals that the thrust generated by the pulsed jet can be broken down into

three independent measurable quantities. Term I represents the force to instanta-

neously accelerate the CV the ẑ direction. Term II represents the force required to

add mass to the growing CV, both by injection and entrainment. Both of these terms

can be approximated by tracking the CV volume and center of mass position at each

time during its growth. Term III describes the pressure around the growing vortex

bubble that resists its growth. This term can be thought of in terms of the added mass

associated with the growing vortex bubble as it pushes all of the external fluid out

of the way [7, 11]. Term III requires knowledge of the pressure field surrounding the

vortex bubble, which is not directly measurable from the fluorescence experiments.

In order to circumvent the need to directly measure pressure on the vortex bubble,

I estimate the pressure on the vortex bubble using the common approximation that

flow outside the vortex bubble is irrotational. Although I expect the vorticity inside
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the vortex to diffuse beyond the extent of the fluorescein dye [44], for short times,

the pressure variations from local diffused vorticity should be small compared to the

pressures associated with the added mass of the vortex bubble motion.

By assuming flow around the vortex bubble is inviscid, and leveraging the as-

sumption that the vortex bubble is approximately ellipsoidal (validity for early times

demonstrated a posteriori), the pressure on the leading surface of Svb can be equated

to to the pressure experienced by an ellipsoid that is translating and expanding un-

steadily in a potential flow. See Fig. 3-4c for an example of this pressure field.

This potential flow model reduces the pressure term (Eq. 3.3-III) to a function of

vortex bubble motion and geometry, which allows the total thrust (all three terms

of Eq. 3.3) to be estimated entirely using measuring the motion and growth of the

fluorescent jet wake.

3.3 Measurements & processing

Based on the analytical description of the thrust production process, the thrust es-

timation process can be broken up into 7 steps once a video of the experiment is

acquired:

1. Analyze a static image of the experiment (calibration image) for nozzle posi-

tions, orientation, and size.

2. Preprocess video frames to improve image processing results.

3. Identify control volume in video frames (Fig. 3-5b).

4. Calculate the size and position of the ellipse that bounds the vortex bubble

(Fig. 3-5c).

5. Calculate inertial component of CV momentum by tracking CV volume and

center of mass in each frame.
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6. Calculate pressure along leading edge of the CV by using vortex bubble motion

and growth. Calculate the associated pressure force by integrating the pressure

on the section of the surface directly below the nozzle.

7. Calculate time-varying thrust during nozzle formation using the momentum

equation (Eq. 3.3). For the calculation, use measurements of CV kinematics

from step 5 and add the integrated pressure from step 6.

Using this approach, I analyze the high-speed fluorescence videos of the jet forma-

tion and development. Jets are ejected for a duration of 1s, but the jet development is

only tracked for the first 0.3s while the jets develop. This is equivalent to calculating

the properties of a jet with stroke ratio of L/D = ujt/D ≤ 2. Such small stroke ratios

reflect the desired operating regime for short pulses to be used in vehicle maneuvering.

Additionally, during this short time window, the vortex wakes retain their ellipsoidal

structure, satisfying the assumptions of the analysis technique.

Although this technique relies on many approximations to estimate the force,

the ultimate goal of this project is to compare the thrust produced by identical jets

under modified operating conditions (proximity to a second jet). The approximations

made in this technique should systematically impart any inaccuracies to all of the

measurements, making the measurement of relative forces fairly robust. However, as

a result of the approximations, this technique may prove less reliable if it is applied

to problems with more complex geometry, or if the goal of the analysis is an exact

force measurement.

Finally, it should be noted that while this control volume approach provides a

means by which to estimate the thrust being generated by the jet, it does not di-

rectly indicate what kinds of interactions cause the observed behaviors. The values

calculated with this method only provide a proxy for the forces. Additional model-

ing or experiments are required to determine the physical mechanism producing the

observed effects. This point is discussed further in Chapter 4.
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Image Calibration (Step 1)

Before acquiring fluorescence data, I photograph the experimental field of view

under backlit conditions (see Fig. 3-5a). This calibration image provides the nozzle

locations and magnification (px/mm) for each experiment, so that experiment images

can be analyzed more robustly, and analysis results can be converted to physical units.

This analysis step provides the location of the nozzle centerline, which is used as

the symmetry axis for later computations of CV volume and radius.

At this point, the orientation θn of the nozzles relative to the vertical is also mea-

sured, so that images can be rotated and aligned with the global analysis coordinate

system before processing.

(a) (b) (c)

Figure 3-5: Different steps of the analysis process. (a) Calibration image of the nozzles. This image
is used to determine the nozzle positions, their separation ∆, their outer diameter in pixels douter,
and the nozzle angle relative to the camera. (b) A typical frame of one nozzle after preprocessing and
masking. The blue mask represents the CV identified using standard computer vision techniques.
(c) Ellipsoid fit to the vortex bubble, which is used to estimate pressure. The semi-minor axis has
length a and the semi-major axis has length b. While the vortex bubble does not perfectly fit the
vortex structure, it serves as a good approximation to the shape in order to calculate the pressure
along the leading edge of the CV.

Image Analysis (Steps 2-4)

The goal of the image processing is twofold: (1) identify the material boundary

for control volume analysis, and (2) track the ellipsoidal vortex bubble needed to
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estimate the pressures on the control surface.

In order to isolate the fluorescent wake, I use standard image processing techniques

implemented in the Python programming language [45, 46]. It is easiest to analyze

each wake independently, so for experiments with two nozzles, the images of each

wake are automatically cropped to only bound the relevant wake, and the two nozzles

are analyzed independently.

For each frame of a fluorescent video sequence, image contrast is enhanced with

a local contrast filter, and the control volume is then segmented using a local Otsu

threshold [46, 47]. The thresholding results are improved by using knowledge of the

nozzle positions. The results of the thresholding operation are then filtered using a

horizontal hole-filling algorithm. This operation fills any gaps in the segmentation

from noise or entrained fluid, generating the mask shown in transparent blue in Fig. 3-

5b. Using this filled region, the boundary is calculated using standard edge-finding

techniques [48]. At this point, the masked region and boundary represent a 2D-slice

of the axisymmetric control volume and control surface, respectively. By assuming

that the control volume is axisymmetric, all calculations over the entire volume can

be reduced to calculations on this 2D slice.

Finally, the position and size of the ellipsoidal vortex bubble are calculated. To

do this, the maximum diameter of the CV is identified, and taken to represent the

major axis of the vortex ellipsoid, with length 2b. The point where the major axis

intersects the symmetry axis (identified in the image calibration step; see solid lines in

Fig. 3-5a) is chosen as the ellipsoid center. The ellipsoid semi-minor axis, of length a,

is determined as the vertical distance from the ellipsoid center to the leading edge of

the vortex bubble. This technique yields an ellipsoid fit like the one shown in Fig. 3-

5c. Tracking these vortex bubble properties for each frame produces time series for a

and b as well as the vortex bubble’s z-position zvb. Such time series are presented in

the following chapter in Figs. 4-3 and 4-4.
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Inertial contribution to momentum (Step 5)

Once the control volume is identified in the image analysis step, the inertial terms

in the thrust equation (Eq. 3.3-I and II) can be calculated directly by measuring the

CV center of mass and volume.

Because the control volume is assumed to be axisymmetric, its center of mass can

be calculated from the 2D mask identified in the previous step. A standard center of

mass algorithm [45] is applied to the binary mask in order to identify the axial (ẑ)

and radial (r̂) position of the control volume center of mass.

To calculate CV volume from these 2D slices, the boundary of the 2D mask is

assumed to be axisymmetric about the (vertical) ẑ axis. Because the mask is filled

in with a horizontal hole-filling algorithm, the radial extent of the mask, %, is single

valued as a function of vertical height, z. Therefore, given these two observations, the

volume can be calculated by integrating radial extent of the boundary, in cylindrical

coordinates, along its height (to Z):

Vcv =

∫ Z

0

π%(z)2dz.

Using the image data, this integral is calculated with a trapezoidal integration routine.

Since each frame yields two independent measurements of the control surface’s radial

extent (left and right sides of the symmetry axis - see Fig. 3-6), the mask boundary can

be divided in half and the CV volume Vcv calculated for on each half independently.

The two volume calculations are then averaged to provide a volume measurement for

the control volume in that frame.

By calculating control volume position zcv and volume Vcv in each frame, I can

measure the time evolution of these quantities. These time series allow me to calculate

ucv ≈ żcv and subsequent temporal derivatives that are necessary for the calculation

in the first two terms of Eq. 3.3.
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Figure 3-6: Implementation of the volume calculation one frame of the control volume. The CV
can be parametrized by the radius as a function of height %(z), and this value integrated from z = 0
to the maximum extent of the CV z = Z. Because each frame provides two measurements of %(z)
(to the left and right of the red centerline), I calculate the volume based on both measurements of
%(z) and average the two results to determine the volume of the CV in that frame.

Control surface pressure estimation (Step 6)

In order to compute the last term of the thrust equation (Eq. 3.3-III), I estimate

the pressure on the leading edge of the control surface. This restricted portion of the

control surface is used because the most significant pressure contribution to vertical

(ẑ) momentum balance will come from the pressure on this face.

To estimate the pressure on the control surface, I evaluate the velocity potential

φ around a translating oblate ellipsoid of revolution. Using the Bernoulli equation:

pvb − p0 =
ρ

2
(∇φ)2

∣∣∣
Svb

+ ρ
∂φ

∂t

∣∣∣
Svb

. (3.4)

As shown in Appendix A, the velocity potential can be written in terms of ellipsoid

geometry (principal axes a along ẑ and b along r̂) and velocity (wẑ), which are

measured as a function of time in step 4. Time derivatives are calculated with using

central differences, and the results are smoothed by a gaussian window with σ =2

data points.
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Because the pressure calculation only needs to be evaluated on the ellipsoid sur-

face, the spatial derivatives can be calculated analytically as shown in Appendix A,

and the pressure around the ellipsoid can be calculated explicitly as a function of a, b,

and w for each frame. An example of the pressure distribution around the ellipsoid

is shown in Fig. 3-4c for an oblate ellipsoid translating steadily in the +ẑ direction.

Finally, to calculate the pressure contribution to the thrust equation, I integrate

the pressure acting on the control surface. Because the pressure is highest directly

below the nozzle, as is the ẑ component of the control surface normal n̂, the pressure is

only integrated directly below the nozzle. The integral is calculated numerically using

trapezoidal integration, and accounting for the radius in the axisymmetric integral.

Because this integral is not calculated across the whole surface, where the pressure

can become negative, it will tend to slightly overestimate the total pressure force

experienced by the control volume. The purpose of this calculation is to estimate

the pressure on the leading control surface, which is associated with the added mass

effects of the jet pushing ambient fluid out of the way.

Thrust calculation (Step 7)

Once the inertial and pressure terms of the momentum equation (Eq. 3.3) are

calculated, they can be added together to provide an estimate for the total thrust

produced by the pulsed jets. Since each calculation was performed frame-by-frame,

an entire video provides the time evolution of the thrust force, as shown in Fig. 4-6.
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Chapter 4

Experiment Results

Using the experimental methods described in Chapter 3, I track the evolution of

jet wakes for individual jets (∆→∞), and for select nozzle spacings increasing from

∆ = 1.5D. Because ∆̃ = ∆/D arises as a natural dimensionless group in this problem,

I will generally use ∆̃ instead of ∆.

The first half of this chapter presents data describing the behavior of the thrust

production for the two nozzles used in my experiments. This section compares their

behaviors when they eject jets individually, ∆→∞.

The second half of this chapter investigates the interactions between two nearby,

parallel jets and demonstrates the effects of jet interaction on thrust production.

Using the available data, the relative importance different contributors to thrust

production can be identified, as can their scalings with ∆̃.

Supplemental video data can be found in the MIT library archives with the physical

thesis, or online (as of Jan 27, 2016) at:

http://www.youtube.com/playlist?list=PLZz0i65PO8GYvkzeKpQF5zCYFkOgp9B1J
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Description of experiments

Experiments were performed with two nozzles at ∆̃ = 1.74, 1.77, 1.94, 2.15, 3.30, 3.80,

and for each of the two nozzles individually, which corresponds to the limit ∆̃→∞.

For each configuration of ∆̃, 5 experiments were run. Each experiment was analyzed

independently, and the results are averaged together in the plots presented in this

section. Data points typically represent the median value from the 5 experiments,

and the error bars represent the standard deviation. In some plots, the large data

point represents the median, and the values from individual experiments are plotted

as smaller markers.

For each experiment, I analyzed each of the two jet wakes independently, accord-

ing to the assumptions laid out in the previous chapter. This provided me with two

measurements of thrust generation for each experiment performed. In some experi-

ments (∆̃ = 1.74, 1.77, nozzle 2) the wake deformed significantly beyond what could

be treated as a quasi-axisymmetric ellipsoid, so the CV could not be reliably fit to

an ellipsoid at later times, although CV average measurements were unaffected. The

data relying on ellipse fits for these runs was ignored. For all experiments, the wake

is analyzed between t =0.08ms and t =0.30ms. Because the initial startup flow is

slow, analysis of the frames before 0.08ms did not generate consistent results. The

time t = 0 corresponds to the moment when the solenoid valves are opened and the

jets begin to develop.

4.1 Analysis of single-jet thrust production

Fig. 4-1 shows an image series of typical jet development for each of the two

nozzles when operating independently. From these images it is clear that there are

slight experimental differences between the two nozzles. The wake from nozzle 2

appears to advance slightly more slowly than that of nozzle 1, and the shape of the
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wakes differ slightly. Most noticeably, the vortex spiral is more elongated (vertically)

in the wake of nozzle 2 than that of nozzle 1. An observation that is more easily

noticed in the videos is that the two wakes experience a shear instability causing

the straight jetting region to develop an oscillating profile. Although both nozzles

experience a similar instability, the onset of the instability differs between the two

nozzles (even when the jets form independently), introducing a phase delay between

the two instabilities. In the time-series plots shown below, this behavior manifests

as sinusoidal oscillations in the measured quantities. Values for nozzle 1 and nozzle

2 typically oscillate around the same mean, but with different phase. While these

oscillations will be apparent in time-series plots, for the final plots of average thrust

produced, these effects are averaged out.

To differentiate the two nozzles in the following plots, I use the notation ∆̃→∞1

to denote nozzle 1, and ∆̃→∞2 for nozzle 2.

Fig. 4-2 shows the time-evolution of CV position and volume. These quantities

are used to calculate the inertial contribution to thrust, as described by Eq. 3.3

(terms I and II). Given the linear tendency of this data, perturbed by small sinusoidal

oscillations, it is reasonable to ignore the oscillations and only consider the average

behavior by fitting a line to the position and volume.

This simplification has two important consequences for the interpretation of the

total thrust. First, if the CV position evolves linearly in time, then the average CV

velocity ucv is a constant, meaning that the first term of Eq. 3.3, TI = ρu̇cvVcv = 0

since u̇cv = 0. Hence, the early-time relationship between thrust and wake inertia

is dominated by the growth of the CV (both from jet ejection and from ambient

entrainment). Second, since the linearization yields ucv = const and V̇cv = const,

the total inertial contribution to thrust will be a constant for the duration of the

experiment. This contribution is plotted in Fig. 4-5. Ultimately, since I am interested
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in the leading-order effects of nozzle separation on thrust production, the remainder

of the analysis will be performed with the linearized data.

In addition to the CV growth, the growth and motion of the vortex bubble are

tracked. The evolution of the major and minor radii, b and a respectively, is plotted

in Fig. 4-3. Since these quantities oscillate more dramatically, they are not fit to

lines, and their numerical derivatives are used to calculate the leading edge pressure,

as described in Sec. 3.3. The vortex bubble, however, does follow a fairly linear

trajectory as it moves, as is shown in Fig. 4-4. This path is fit to a line, yielding a

single value for the vortex bubble velocity w that is used in the pressure calculation.

After it is calculated, the pressure is integrated to provide the vortex bubble pressure

contribution to the total thrust. The pressure contribution is shown alongside the

inertial contribution in Fig. 4-5.
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Figure 4-1: Sequence of images from typical single-nozzle experiments. The top row shows the
wake development for nozzle 1, the middle row shows wake development for nozzle 2. The bottom
row shows a composite image for more direct comparison of the two wakes - the left side of each
frame is taken from nozzle 1, and the right side from nozzle 2.
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Figure 4-2: Results of CV tracking for single nozzle experiments. Red lines represent the CV
position and volume for nozzle 1, green lines represent the values for nozzle 2. Solid lines represent
the median curve from 5 experiments, and the shaded regions represent one standard deviation.
Both position and volume are roughly linear across the time range measured, with small sinusoidal
oscillations arising from a shear instability along the jet. These oscillations are amplified in discrete
time derivatives, but can be suppressed if the data is fit to a line.

One fact that becomes immediately apparent when comparing these two contri-

butions is that the force arising from the pressure around the control surface is only

15% the scale of the inertial contribution. Hence, to leading order, the thrust pro-

duced by the nozzles is determined by the inertial term in the control volume equation

(Eq. 3.3), so that:

T = An(ρu2
j + pn) ≈ ρucvV̇cv. (4.1)

This data-driven approximation provides an interesting simplification to analyzing

the mechanism behind thrust generation in a single jet. While it is understood that

at the nozzle exit plane, an increased nozzle pressure provides a thrust benefit to

using a pulsed jet [7, 8], this effect has been interpreted in terms of added mass

effects and entrainment of ambient fluid [7, 8, 11, 12, 44]. These interpretations can

be refined for the early times by observing that the pressure forces associated with

ambient added mass are much smaller than the momentum change associated with

entraining ambient fluid into the vortex bubble.
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4.2 The effect of two-jet interactions on thrust

Because the present analysis technique focuses on times where the control volumes

remain nearly axisymmetric, the behavior of the dynamical quantities (ucv, Vcv, a, b,

zell) are qualitatively similar to those presented for the single nozzle experiments. For

this reason, most of the time series plots are omitted here. For the interested reader,

additional time series plots for two-nozzle experiments are provided in Appendix C.

In order to understand the effect of nozzle proximity on thrust production, I com-

pare the average values of the various measured and derived quantities at each value

of ∆̃. Because of the slight differences in the behavior of the two nozzles, quantities

Figure 4-3: Evolution of the vortex bubble geometry. As described in Chapter 3, the vortex
bubble is fitted to an ellipse, and the ellipse’s minor radius a and major radius b are tracked along
with its center. The ellipse radii and their time derivatives, plotted here, are used to calculate the
pressure along the leading edge of the vortex bubble.
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Figure 4-4: Evolution of the vortex bubble position and ẑ velocity. Like the CV velocity and
volume, the vortex bubble position can be reasonably fit to a straight line to ignore the oscillations.

measured for nozzle 1 are provided relative to the average behavior of nozzle 1 indi-

vidually (e.g. ucv,1(∆̃)/ucv,∞,1). The data for nozzle 2 is normalized in the same way.

This normalization tends to collapse the behavior of both nozzles onto a single curve

for any given quantity, providing more robust measurements of the trends associated

with nozzle spacing. Un-normalized data are provided in Appendix C.

As in the single nozzle experiments, the CV position and volume were tracked for

each nozzle in the two-nozzle experiments, and the time evolutions were fit to lines in

order to determine the CV velocity and growth rate. These quantities, averaged over

the entire experiment (from t =0.08s-0.30s), and normalized for nozzle behavior, are

plotted for each ∆̃ in Figs. 4-7 and 4-8.

From these figures it is apparent that while the CV velocity depends rather

strongly on nozzle spacing, the volume growth rate is roughly constant across the

range of ∆̃, with the exception of a couple of the points above ∆̃ = 3.30. These points

seem to be outliers, although the source of their deviation remains unknown. As with

all quantities described in this section, the normalized values should asymptote to 1

as ∆̃ → ∞, since the single-nozzle experiments realize that limit. Therefore, since

I have no reason to believe that there is a physical phenomenon causing the erratic
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Figure 4-5: Pressure and inertial contributions to thrust for single-nozzle. Because the vortex
bubble growth is not linear, the pressure force grows nonlinearly with time. When comparing the
pressure forces to the inertial forces, observe that the scales on the vertical axes are different. The
inertial forces are approximately ten times greater than the pressure forces at the times investigated.
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Figure 4-6: Thrust evolution with time for single-nozzle experiments. The thrust scale is domi-
nated by the (constant) inertial contribution from the CV analysis.
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Figure 4-7: Normalized average CV velocity for each experiment, as a function of nozzle spacing
∆̃. The CV velocity exhibits a strong and highly local dependence on ∆̃, increasing approximately
as 1− ∆̃−6. The blue squares represent data from nozzle 1, red triangles represent nozzle 2, and the
black line represents a fitted 1-parameter model as described in the text.
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Figure 4-8: Normalized average CV volume growth rate V̇cv for each experiment, as a function of
nozzle spacing ∆̃. V̇cv remains nearly constant across all experiments, with the exception of some of
the higher values of ∆̃. The blue squares represent data from nozzle 1, red triangles represent nozzle
2. The shaded region represents the standard deviation of V̇cv,∞ measurements.
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behavior around ∆̃ = 3.3, I attribute the small (2%) deviation to some experimental

factor. I will continue with the analysis of these experiments, aware of these unusual

outliers.

The behavior of the CV velocity follows a trend that is reasonably described by:

F (∆̃) = 1− C∆̃−6, (4.2)

where F is the (normalized) quantity on the vertical axis and C is a dimension-

less parameter that describes the strength of interaction between the nozzles. Fit-

ting the normalized CV velocity to this 1-parameter model yields a coefficient of

Cu = 1.94± 0.06. The error bars around the fitted model reflect the standard devia-

tion of the experimental data at ∆̃→∞. This empirical model is useful elsewhere in

this section, and a justification for this form is presented in Chapter 5.

The different behavior of ucv and V̇cv reveals an interesting prediction for the

thrust associated with vortex formation. Since V̇cv is nearly constant across all ∆̃,

the approximation in Eq. 4.1 suggests that, with respect to its ∆̃ dependence, thrust

should scale as T ∼ ucv. This prediction is validated by the data in Fig. 4-14.

The measurements for ucv and V̇cv are combined to calculate the inertial contri-

bution to force TII , which is plotted in Fig. 4-11. Because ucv contains the strongest

dependence on ∆̃, the calculation of TII reflects this dependence most clearly. Fitting

TII to the form (Eq. 4.2) yields a coefficient CTII = 1.74± 0.11.

Next, in order to calculate the pressure forces, the vortex bubble geometry was

tracked, and the average principal radii growth rates were calculated (ȧ and ḃ). The

results of these calculations are plotted as a function of ∆̃ in Fig. 4-9. Similar to

the CV velocity, both radii growth rates reveal a strong and highly local dependence

on ∆̃. An interesting result here is that the minor radius growth rate ȧ exhibits

a much stronger dependence on ∆̃ than the major radius ḃ, and that the sign of
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Figure 4-9: Average vortex bubble growth rates for the minor and major radii, ȧ and ḃ. As two
nozzles are brought into closer proximity, the growth rate ḃ slows, and a concomitant increase in ȧ
is observed.
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Figure 4-10: Average vortex bubble velocity w. As the nozzles are brought together, the velocity
decreases significantly, reflecting the trend 1− C∆̃−6.
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Figure 4-11: Normalized average inertial contribution to the thrust TII , as a function of nozzle
spacing ∆̃. For close nozzle placement, the inertial force term drops by nearly 8% compared to the
limiting value of a single nozzle. The outliers in V̇cv are reflected in the calculation of TII .
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Figure 4-12: Normalized average pressure contribution to the thrust TIII , as a function of nozzle
spacing ∆̃. As the nozzles are brought closer together, the average pressure force drops by nearly
30%. Despite this large fractional drop, because the pressure force is an order of magnitude smaller
than the inertial force, the total thrust does not change as strongly.
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Figure 4-13: Relative scale of the two contributors in the thrust calculation: pressure contri-
bution to inertial component (TIII/TII). As was seen for the single nozzle experiments, the scale
of the pressure contribution is much smaller than that of the inertial contribution, indicating that
entrainment and CV acceleration is a more important process than the ambient added mass reaction.

the dependence is opposite that of ḃ and ucv. As the nozzle spacing decreases, the

minor radius grows up to 40% larger, and the major radius shrinks by nearly 15%.

This result reflects the earlier observation that the wake maintains a nearly constant

volume, as show in Fig. 4-8. Since a < b and Vvb = 4πab2/3, a small decrease in b

requires a larger increase in a to maintain a constant volume.

In addition to the vortex bubble’s growth rate, its position was measured and

linearized to calculate the vortex bubble velocity w. The behavior of w is qualitatively

similar to that of ucv, with a considerably stronger dependence on ∆̃. This difference

in coupling strength arises because the CV average velocity includes regions that are

stationary from frame to frame, while the vortex bubble is subset of the CV that is

always moving. The vortex bubble velocity is plotted in Fig. 4-10. The coefficient

fitted from the model is Cw = 6.37± 0.20.

The time-evolution of the vortex bubble geometry and velocity are used to cal-
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culate the pressure contribution to the total thrust TIII , which is plotted Fig. 4-12.

Compared to the inertial contribution to the thrust TII , the pressure contribution

demonstrates a stronger dependence on ∆̃, although the data is somewhat noisier.

Fitting the model (Eq. 4.2) to the data provides a coefficient CTII = 1.74 ± 0.11 for

the inertial contribution and CTIII = 7.08± 0.73 for the pressure contribution.

Despite the stronger dependence of TIII on ∆̃, this behavior is not significantly

reflected in the total thrust because the scale of the pressure force is significantly

lower than that of the inertial force (similar to what was observed in the single nozzle

experiments). Fig. 4-13 demonstrates this point by plotting the relative strength of

the two thrust components TIII/TII against the nozzle spacing ∆̃. This plot reveals

that for all nozzle spacings, TIII ≤ 0.15TII .

Finally, the total thrust is calculated according to Eq. 3.3, and plotted as a function

of ∆̃ in Fig. 4-14. When the inertial and the pressure contributions are combined, the

result is a strong, highly localized dependence on ∆̃. As the nozzles are brought into

close proximity, the average thrust drops by nearly 10% of its value for a single nozzle.

Such a large drop can have important implications for vehicle control when using

multiple nearby thrusters based on a pulsed jet. These implications are discussed in

the following chapter.

For now, it only remains to describe the form of the thrust dependence on ∆̃. As

was the case before, the thrust aligns well with the trend described by Eq. 4.2. As

the nozzle spacing decreases below a critical value (∆̃c ∼ 2.5), coupling between the

two jets suddenly becomes more important. In this operating regime, jet coupling

causes the thrust to fall as

T ∼ T∞(1− Co∆̃−6), (4.3)

where Co = 2.42±0.11 is the dimensionless “coupling coefficient” that describes how

much nozzle coupling affects thrust production relative to an individual nozzle.
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Figure 4-14: Normalized average thrust over first 0.3s for each nozzle spacing tested. The nor-
malized thrust should monotonically asymptote to 1 as ∆̃ → ∞. The solid line represents a fit
to the 1-parameter model given by Eq. 4.2 , which is discussed further in Section 5. In this case,
T/T∞ = 1 − Co∆̃−6 for a value of the coupling coefficient, Co = 2.42 ± 0.11. The shaded region

represents the standard deviation of the average thrust measured for the single nozzle (∆̃ → ∞).
Blue squares represent the mean values from nozzle 1, and red triangles represent the mean values
from nozzle 2. The results of individual experiments are shown as colored circles. In many cases,
these points are covered by the markers for the average.
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4.3 Effects on efficiency

One important question that has not yet been addressed is effect of ∆̃ on the

thruster’s efficiency. For this purpose, recall that the conceptual thruster, the nozzle

in my experiments, is driven by a pressure pd, which displaces a volume at a rate Q̇ for

a period dt. Then the power put into producing the thrust is Ė = pdQ̇. As a measure

of useful work production, I note that the goal of these thrusters is maneuverability

- fast bursts of thrust for short periods of time. So a measure of useful work is the

thrust produced T, multiplied by the speed at which it can be delivered uj, so that

the total efficiency for the thruster is be given by:

η =
Tuj

pdQ̇
.

Plugging in typical experimental values: T ∼ 0.05mN, uj ∼ 50mm/s, pd ∼ 114Pa, and

Q̇ ∼ 1.68mL/s, yields an abysmal efficiency of η ≈ 0.013. However, this experiment

was not designed to replicate a thruster in all regards. Many design parameters,

including the thruster scale and operating regime, will affect the efficiency and should

be accounted for in design.

The valuable result from these experiments is an understanding of how the nozzle

spacing ∆̃ affects the efficiency. Since the jet velocity uj, flow rate Q̇ and driving

pressure pd did not vary with ∆̃, the efficiency of the thruster should scale as the

thrust T does. Moreover, compared to the efficiency of a single jet η∞, the efficiency

of two jets separated by a distance ∆ will be given by:

η(∆̃)

η∞
=
T (∆̃)

T∞
= 1− Co∆̃−6. (4.4)

Based on this result, Fig. 4-14 not only indicates how thrust varies with nozzle spacing,

but also how the efficiency should vary with nozzle spacing as well.
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Chapter 5

Discussion of two-nozzle

interactions in pulsed jet formation

Based on the results presented in Chapter 4, when two simultaneously pulsed jets

are brought into close proximity, their wake dynamics destructively interfere with

each other, causing a drop in the total thrust generated as well as in the efficiency of

the thrust production.

I use this chapter to describe a possible physical mechanism for thrust and ef-

ficiency reduction with ∆̃. This model provides insights for both vortex formation

dynamics and for thruster design. In the first section, I discuss how my data reveals

physical mechanisms relevant to thrust production in pulsed jets. Then, in the re-

maining two sections, I develop two scaling arguments based on physical principles

that qualitatively account for the behavior of T shown in Fig. 4-14.

Throughout the discussion in this chapter, I assume that ambient pressure is

p0 = 0, or equivalently, I treat all pressures as gauge pressures.

61



5.1 Sources of nozzle over-pressure during vortex

formation

Data obtained by a control volume analysis can often be tricky to interpret. While

control volumes are a useful analysis tool that can instruct indirect measurement tech-

niques, the results of the analysis are only correlations - they do not reveal any causal

dependence between the quantities measured. Consider, for example, the thrust equa-

tion, Eq. 3.3, which allows the total force to be measured by analyzing fluorescence

data (reproduced here for convenience):

T = Anρu
2
j + Anpn ≈ ρu̇cvVcv︸ ︷︷ ︸

I

+ ρucvV̇cv︸ ︷︷ ︸
II

+

∫
Svb

pvb n̂ · ẑ dA︸ ︷︷ ︸
III

.

On its own, this equation does not explain any physical mechanism behind thrust

production in a pulsed jet; it can only indicate how these groups of terms are related.

In the most fortunate circumstances, the analysis can reveal that one or two of the

measured terms dominate the behavior, and that the rest can be ignored. Such was

the case in my experiments, whereby the first and third terms on the right side of

the equation can be neglected compared to the second term, when considering only

leading order behavior. When further coupled with additional data and a model,

the control volume approach can become very powerful. For the data presented

herein, some illuminating physics can be drawn from these empirical observations

coupled with models that describe the physical relationship between different terms -

when each term can be associated with a different physical phenomenon, the relative

magnitudes of the terms can illuminate which phenomena are most closely linked in

a complex system such as vortex formation.

To see this directly consider the physical interpretations of each term in the thrust

equation:
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T The total thrust experienced by the thruster, which is equivalently the

rate of momentum flux into the wake.

Anρu
2
j This term represents the component of thrust associated with generat-

ing fluid motion at a velocity uj within the thruster.

Anpn This term is the force given by nozzle over-pressure, which arises from

near-field dynamics as the vortex is forming. It can be derived explicitly

in terms of the streamline curvature at the nozzle exit [10], and has been

interpreted in terms of the added mass of the forming vortex wake [7, 8].

ρu̇cvVcv This term represents the force required to instantaneously accelerate

the control volume’s center of mass.

ρucvV̇cv This term represents force required to bring external fluid into the CV,

accelerating it to speed ucv. The term ρV̇cv includes both the volume

growth because of mass injection from the jet (ρujAn), as well as volume

growth from ambient entrainment via vortex roll-up (shear driven).

∫
Svb

pvb dAz This term comes from the pressure resisting control volume growth and

motion (here, in the ẑ direction). This pressure arises as an added mass

reaction associated with accelerating all of the fluid originally outside

of the nozzle. In a common interpretation, this term represents the jet

‘pushing off’ of the ambient fluid.

Starting at the beginning of the thrust equation, a control volume around the

thruster itself (Fig. 3-4) indicates that there are two contributors to thrust production:

the jet velocity (inertia), uj, and the nozzle pressure pn. Currently, pulsed jets are

understood to produce more thrust than equivalent continuous jets because they gain

the benefit of the additional nozzle pressure pn. Mathematically, this nozzle pressure

can be related to the curvature of streamlines near the nozzle [10], where the vortex
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is rolling up during pulsed jet formation. Revisiting the data in Fig 4-14 in this light,

it becomes clear that any effects of jet interactions on thrust reflect the effects that

the interactions have on the nozzle over-pressure pn. To see this, recall that across all

of the experiments, the jet velocity uj did not vary, so any variation observed in T

must arise solely from variations in pn. In this case, with respect to the scaling with

∆̃, the first half of Eq. 3.3 reduces to

T ∼ Anpn.

This in mind, it remains to understand what physical interactions arise between

neighboring nozzles to affect pn. To do this, the second control volume around the

wake is useful, which contributes the final three terms to Eq 3.3. Based on the

interpretations provided above, terms I and II represent the inertial portion of the

CV momentum, and term III represents the pressure portion, associated with external

added mass.

As has been commonly explained based on control volume analyses [7, 8], one

source of the thrust benefit associated with pulsed jets has been explained as the jet

‘pushing off’ of the stationary fluid behind the jet (term III). Another source of the

thrust benefit has been described in relation to the external fluid entrained into the

vortex bubble (terms I and II) [7]. While these two interpretations are not mutu-

ally exclusive, they do represent different physical phenomena that can contribute to

thrust production (in fact these two phenomena must arise together when conserva-

tion of mass and vorticity are accounted for in the unsteady flow). The added mass

term is dominated by normal forces generated since the pulsed jet must accelerate

previously stationary flow immediately around the nozzle. Krueger uses a potential

flow model to describe how this term must be significant at very early times during

formation [7]. The inertial terms, on the other hand, is produced by normal and shear
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forces as the jet grows into the ambient fluid, and also entrains (shear) ambient fluid

into the CV. Given the data presented in Fig. 4-2, it is clear that during the course of

these experiments, the control volume doesn’t accelerate significantly, so that u̇cv ≈ 0

as observed in Chapter 4. This observation indicates that the only inertial contri-

bution comes from term II, which represents CV growth. From this simplification,

thrust production must be associated with these two phenomena:

T = ρucvV̇cv +

∫
Svb

pvbdAz.

The two remaining terms associated with the wake inherently represent the two dif-

ferent mechanisms for thrust production: added mass associated with the jet ‘pushing

off’ of the ambient fluid, and shear-driven entrainment of ambient fluid into the CV.

While both interpretations have been used to describe the benefits of pulsed jet

thrust production, the data presented in Fig. 4-13 clearly demonstrates that the more

important effect comes from the entrainment term given that TIII/TII < 0.15 for all

experiments. Moreover, by observing that the total volume growth rate V̇cv does not

change with ∆̃, and the previous observation that uj doesn’t change with ∆̃, the

thrust scaling becomes

T (∆̃) ∼ Anpn(∆̃) ∼ ρV̇cvucv(∆̃). (5.1)

Now that this scaling relationship is reduced to only one term on each side, the

complex physical relationships in the problem of pulsed jet thrust production can

be decoupled. The simplest explanation of Eq. 5.1 indicates that additional nozzle

pressure does not change the amount of volume entrained into the CV as the wake

develops (this is likely set by the circulation, which is set by uj), but does determine

how fast the CV is moving.
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5.2 Geometric argument for thrust reduction based

on the slug model

Despite its implications for understanding wake dynamics in the pulsed jet, the

result in Eq. 5.1 does not intuitively reveal why pn decreases as ∆̃ is decreased.1 To

develop a better model for this, I resort to a scaling argument based on an observation

made by Krueger [19]. He demonstrated that the nozzle over-pressure pn is dependent

on the curvature of the streamlines at the nozzle exit plane according to:

pn ∼ p(r = 0, z = 0) = ρ

∫ D/2

0

uz
∂ur
∂z

∣∣
z=0

dr, (5.2)

where uz is the axial velocity field and ur is the radial velocity field, evaluated at

the nozzle exit plane z = 0. Given this relationship, it makes sense that any physical

obstacle or interaction that changes the streamlines, specifically that alters the axial

gradient in radial velocity, will affect the nozzle over-pressure. If two ideal pulsed

jets are placed next to each other, then they represent mirror copies of each other so

that the symmetry condition u⊥ = 0 must be satisfied on the plane dividing the two

nozzles. In this case, then, the radial growth of the vortex ring is limited, and by

volume conservation, it must grow axially instead. Growing axially instead of radially

decreases ∂ur/∂z, thereby decreasing the nozzle pressure.

To verify how well this geometric model is supported by the data, consider how

the terms in Eq. 5.2 scale with the experimentally measured quantities. From the

problem definition, it is natural to expect uz ∼ uj, and r ∼ D. But for the ur and

z, the scalings are less obvious. Because the only measured motion in the r̂ direction

1It is tempting to claim that two vortices next to each other will induce a counter flow that slows
the wake of the neighboring flow by a factor of uind, thereby decreasing nozzle pressure by nature
of Eq. 5.1. However, causality appears backwards in this argument - I would expect a reduced wake
velocity should not cause the nozzle pressure to increase. To the contrary, a slower wake could arise
from higher ambient and nozzle pressures at fixed jet velocity! Furthermore, the functional form of
uind does not match well with the observed data. This line of thinking, however, is useful if instead
the induced pressure is considered. See Section 5.3 and Appendix B for more on this argument.
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is associated with the lateral radial growth of the vortex bubble, it is reasonable to

expect that ur ∼ ḃ. The derivative ∂ur/∂z represents how suddenly (along z) the

radial velocity changes. Given the geometry of the forming vortex ring, the radial

velocity must change from ur = 0 to its maximum value between the nozzle exit plane

and the leading edge of the vortex bubble. This distance is given exactly by a+ zell,

making this a reasonable choice for the z scale. So the final scaling relationships are

uz ∼ uj r ∼ R = D/2 ur ∼ ḃ and z ∼ (a+ zell).

These scalings lead to the expectation that

pn ∼ ρujR
ḃ

a+ zell
. (5.3)

Since uj is constant with ∆̃, and ḃ drops with ∆̃ while a increases with ∆̃, it seems

that the data support this scaling argument, and hence the explanation that nozzle

interactions lower nozzle pressure by geometrically enforcing straighter streamlines.

To see the agreement more directly, Fig. 5-1 shows pn plotted against ∆̃ as it is scaled

in Eq. 5.3. The model fit to this scaling demonstrates that pn ∼ pn,∞(1−Cp∆̃−6) for

a pressure coupling coefficient Cp = 2.77± 0.03.

Inserting this nozzle pressure scaling into the thrust equation yields a prediction for

the value of the thrust coupling coefficient in terms of the (independently measured)

pressure coupling coefficient:

T (∆̃) = T∞(1− Co∆̃−6) = An(ρu2
j + pn,∞ − pn,∞Cp∆̃−6)

= An(ρu2
j + pn,∞)

(
1− pn,∞

ρu2
j + pn,∞

Cp∆̃
−6

)
≈ T∞

(
1− 1

2
Cp∆̃

−6

)
.
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Figure 5-1: (left) Estimated nozzle pressure pn as a function of nozzle spacing ∆̃, calculated
based on the geometric scaling described in Sec. 5.2. As opposed to the calculation of total thrust,
which involved volume measurements and potential flow estimates, the values in this plot were
based solely on the geometry and motion of the vortex wake. The nozzle pressure changes with ∆̃
as pn/pn,∞ = 1−Cp∆̃−6 for a pressure coupling coefficient of Cp = 2.77± 0.03. (right) The scaling
estimates were calculated for each moment throughout the experiment, and these time-series are
shown for select values of ∆̃. To arrive at the values plotted in the left plot, the average value of
each time series was calculated.

Here, the approximation in the final step is made based on Krueger’s data that for low

stroke ratios, the nozzle pressure contributes approximately half of the total thrust

produced [7, 8], so that pn,∞/(ρu
2
j +pn,∞) ≈ 1/2. This analysis predicts a value of the

thrust coupling coefficient

(geometric prediction) Co = Cp/2 = 1.39.

Recall that the experimental measurements of Co (which were calculated through

different means) indicate that Co = 2.42 (see Fig. 4-14). It seems that the scaling

model under-predicts the effect of spacing on nozzle pressure. However, as it is only

off by an order 1 constant, such alignment of the scaling prediction compared to the

thrust measurement suggests that this scaling model reasonably explains the physical

mechanisms at that cause thrust reduction.

Hence, the thrust reduction observed with decreasing ∆̃ can be explained by geo-
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metric constraints on the streamlines during formation. Because the two neighboring

nozzles create a geometric constraint on each others’ growth (perhaps explained by

interacting pressure fields), they force the streamlines to straighten, reducing nozzle

pressure. Tying this back into the other observations, because the nozzle pressure is

reduced, the wake is driven away from the nozzle more slowly than it would have in

the absence of the neighboring nozzle.

The physics of this model are further validated when compared to the results of

Krueger, Dabiri, and Gharib in their experiments of vortex formation in ambient co-

flow and counter-flow [13, 14]. In the case of ambient co-flow (flow parallel to jet), my

model would predict that additional streamwise motion should increase a, decreasing

b as a result of continuity. Based on these assumptions, the scaling model predicts

that the nozzle pressure should decrease, thereby lowering the production of thrust

and circulation as is reported by Krueger et al. [13]. In the case of ambient counter-

flow (flow antiparallel to the jet), the predictions would reverse, suggesting that a

decreases and b should increase by continuity. In that case, the geometric model

would predict a higher nozzle pressure, thrust and circulation production, which is

reflected in the data from Dabiri and Gharib [14].

5.3 Scaling argument for the functional form of

thrust reduction: T ∼ T∞(1− Co∆̃−6)

While the geometric argument provides an interesting way to predict that thrust

(and efficiency) should decrease as nozzle spacing is decreased, the functional form

(∼ ∆̃−6) is difficult to derive that way. However, another scaling approach can be

used to more clearly derive the functional dependence of T on ∆̃.

Because T (∆̃) = An(ρu2
j + pn(∆̃)), any changes in T should arise because of an

additional pressure scale p̃ that is introduced by a second nozzle. Additionally, I
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expect that this pressure scale should shrink as ∆̃ grows so that as ∆̃ → ∞, the

additional pressure scale p̃→ 0, and T → T∞.

These requirements in mind, the pressure scale that I suggest arises comes from

the velocity induction associated with the forming vortex ring. It can be shown that

a single vortex ring with circulation Γ ∼ u2
j t induces a velocity that scales as:

uind ∼ uj
ujt

D

(
D

r

)3

.

See Appendix B and Lamb [49] for more details. Here r is the distance from the

vortex ring in the same (z = 0) plane as the ring. So at a distance r = ∆ from the

nozzle center, the associated induced velocity will be

uind ∼ C∆̃−3

where the constant C incorporates all of the terms from the equation for induced

velocity that don’t scale with ∆̃ (including uj based on the data in Chapter 4).

The pressure scale associated with this velocity field is the stagnation pressure

pind = ρu2
ind ∼ C2∆̃−6 (5.4)

Based on the argument in Section 5.2, I expect the effect of nozzle interactions is

to lower the nozzle pressure by the induced pressure scale, so that when two pulsed

jets are brought together, the nozzle pressure for a single jet pn,∞ is modified as

pn,∞ → pn,∞ − pind.

70



Then the thrust can be expected to scale as

T (∆̃) ∼ An(ρu2
j + pn,∞ − pind)

∼ An(ρu2
j + pn,∞ − C2∆̃−6)

∼ An(ρu2
j + pn,∞)(1− Co∆̃−6),

where the coupling coefficient Co is defined here in terms of C, pn, ρ, and uj.

Finally, recognizing the thrust produced by a single jet T∞ = An(ρu2
j + pn,∞), the

thrust can be expected to scale as

T ∼ T∞(1− Co∆̃−6) (5.5)

as observed empirically in Chapter 4.

5.4 Final remarks on the scaling of T with ∆̃

Given the data and scaling arguments presented above, the problem remains to

determine what sets the coupling coefficient Co. In terms of the arguments presented

herein, how does the geometric mechanism described in Section 5.2 tie into the model

presented here to produce the coupling number Co. Are there system configurations

that can allow Co < 0? Such behavior would be welcomed because it would provide

a means to increase the pulsed jet’s thrust and efficiency.

One way to possibly accomplish this can be garnered from the argument that

thrust reduction arises because streamlines are confine to straighter paths. If instead

of being ejected at the same time, jets were pulsed so that the second jet is ejected as

the stopping vortex forms in the first jet, the close proximity of the negative vorticity

from the first jet would help to curve the streamlines exiting the second nozzle, thereby

augmenting the nozzle over-pressure. In this way, well-timed pulses could exploit the
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stopping vorticity in each others’ wakes to roll-up more efficiently and produce more

thrust. This behavior is not unlike how jellyfish exploit stopping vortices to move

more efficiently [35].

When considering how this behavior scales to larger systems with more nozzles,

I believe that the analysis provided in this section is generalizable to more nozzles.

The geometric and pressure scalings should still apply, since more nozzles will further

straighten the flow, and will provide additional pressure scales that add linearly to

the nozzle over-pressure. The most significant difference will be observed because

of the 3D nature of the wake development. While the pressure scales can be added

linearly, and treated pairwise, the streamlines will develop based on a more complex

three-dimensional flow field around the nozzle, and this behavior cannot be predicted

by the current analysis.

On of the largest limitations of the present analysis is that it assumes quasi-

2D wake development. In reality, the wake dynamics very rapidly become more

complex three-dimensional structures as two nozzles are brought close together and

axisymmetry is broken. It is likely that arguments presented here will continue to

offer leading-order insights into the problem, but a more complete understanding of

the wake dynamics – including the behavior of vorticity and transport properties of

the flow – will require a more thorough 3D investigation.

5.5 Implications for continuously pulsed jets

Although my experiments did not directly investigate the effects of nozzle prox-

imity on continuously pulsed jets, the results could be extended to the continuous

case using the analytical results of Ruiz et al.. Using an assumption of steady vehicle

motion and high pulse frequency, Ruiz et al. demonstrated that the hydrodynamic
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efficiency of the pulsed jet vehicle can be described by [25]

ηRWD = (1 + αV Bxx )
u∞
w
, (5.6)

where αV Bxx is the Bessel added mass associated with the vortex bubble, u∞ is the

vehicle speed, and w is the vortex bubble velocity. The added mass term for any el-

lipsoidal vortex ring can be calculated from vortex bubble geometry using the poten-

tial flow result described in Appendix A. Since the vortex ring added mass decreases

between experiments, and the vortex bubble velocity decreases by as much as 25%

as the nozzles are brought closer together, this analysis suggests the possibility that

two-nozzle interactions could provide an efficiency boost during continuous motion.

This result requires further investigation, but may indicate key differences between

optimal propulsive techniques for steady motion required by long-range travel and

the impulsive motion required by position control systems.

5.6 Salps: swarming jets of the sea

This project was originally inspired by the behavior of salps, so it seems ap-

propriate to conclude with a few comments on their behavior. Salps are a marine

invertebrate shaped like a hollow tube (see Fig. 5-2a). Salps can range in sizes, from

roughly 0.5-10cm in length and about 0.1-3cm in diameter [2, 3]. They propel them-

selves through the water by opening their atrial siphon and compressing their bodies

using muscles that cause a radial contraction. This motion forces a short pulsed jet

out of their rear opening, by which they generate forward thrust. To recover the

water lost during ejection, salps then open their front lips and draw in water from the

oncoming stream [2]. This process typically repeats at a frequency around f = 1Hz

for forward swimming [2, 3].

Compared to other underwater creatures that move around using pulsed jets (such
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(a) (b)
Figure 5-2: Images of salps (Thalia Democratia) in the ocean. (a) Solitary salp. (b) Chain of
three salps. Images reproduced from Cifonauta database [50, 51].

as jellyfish and squid), salps differ in their naturally arising community behavior.

At certain points during their lifecycle, salps can be found as chains of individual

animals that work together in order to propel the entire chain forward [2–4] (see

Fig. 5-2b for an example of a short chain). These chains can range in size from a

few individuals to hundreds of individual salps. For typical migratory swimming,

salps pulse their jets in sequence down the chain, so that no two members eject a jet

at the same time. However, when startled, the chain’s escape response involves all

members of the chain pulsing together [2]. While it is presumably less efficient for

the chain to pulse together, because the periodic acceleration and deceleration loses

more energy to drag, the escape response provides higher instantaneous acceleration

and maneuverability to the chain.

By combining existing research on salps with research on continuously pulsed jets,

one of the conclusions that can be drawn is that the chains will move most efficiently

when the entire chain is moving steadily. In order to provide steady motion, the

average pulse frequency of the chain should be as high as possible, suggesting that

individual members of the chain should pulse in sequence. This way, even though

any individual member is only expending the energy to pulse at a frequency f, the

entire chain moves based on a group pulse frequency of Nf where N is the number

of chain members. In this fashion, the chain can maneuver with the efficiency and
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lower drag associated with steady jetting, while simultaneously receiving the thrust

benefits associated with pulsed jets.

Until now, this argument has provided the sole explanation for why salp chains

pulse synchronously during migratory swimming. However, the results from my ex-

periments reveal an additional, albeit secondary, benefit. For salp chains where indi-

vidual members are closely aligned, my data suggests that individual members will

produce thrust most efficiently when they do not pulse together. When considering

the geometric model of thrust and efficiency loss, this observation has an interesting

corollary for salp chains. Based on the geometric model that predicts how streamline

curvature determines thrust loss, another prediction for salps is that if individual

members are offset in the chain, such as the chain in Fig. 5-2, then consecutive chain

members should not eject a jet until the wake from the neighbor has passed far enough

away that it will not interfere with their own thrust production.

With more research, these observation can be tested and extended to the even-

tual design and control of marine robotic swarms. For small marine robots, efficient

maneuverability remain two of the most challenging problems. By leveraging these re-

sults for the effects of nozzle spacing, in conjunction with observations of salp chains,

marine robots can be designed and controlled for the most efficient maneuverability.
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Chapter 6

Summary and Conclusions

This thesis contains a first look at the effect of nozzle spacing on pulsed-jet propul-

sion. While there have been many studies on the dynamics and thrust production

associated with pulsed jets, I am not aware of any other investigations of side-by-side

interactions of vortex rings during formation. As such, this thesis has provided useful

data explaining the relationship between different factors associated with early-time

momentum transfer in a pulsed jet. These results can be used to help guide theories

of vortex formation, and can inform the design and control of underwater vehicles.

In this thesis, I developed a visual force estimation technique to evaluate how

thrust and efficiency of pulsed jets are affected by the placement of jets in a sys-

tem. I validated that the technique calculated forces of the expected scale, and used

the results to determine the scaling relationships between thrust, efficiency, and jet

spacing. The results of this analysis immediately suggest certain design rules for

the implementation of multi-jet marine thrusters and marine vehicle swarms. Most

clearly, the results demonstrate that when parallel jets are simultaneously pulsed two

interfering wakes are produced, which reduce the thrust production in each jet by as

much as 10%. However, this effect appears to be highly localized so that once the

nozzle spacing exceeds about two and a half nozzle diameters (∆̃ > 2.5), the effects

on thrust and efficiency are negligible.
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Beyond the design recommendations, I used the results of these experiments to

develop a description of the physical interactions governing simultaneous vortex ring

formation. I used a scaling argument to demonstrate that bringing nozzles together

causes thrust production to drop. This argument suggests that geometric constraints

on wake development straighten streamlines at the nozzle, lowering nozzle over-

pressure.

Then, to determine the functional relationship between T and ∆̃, I resorted to a

pressure scale argument. I argued that in the case of simultaneous jet formation, the

nozzle pressure should be modified by the pressure scale associated with the vortex

ring that is forming at the neighboring nozzle. Combining these two arguments,

I predicted a value for the coupling number Co, which governs how strongly the

nozzle spacing reduces the thrust. Using separate methods to calculate thrust, I

validated that these predictions support the experimental results, indicating that they

reasonably describe the leading-order effects of vortex interactions during pulsed jet

formation.

The results of this research not only point to a physical mechanism for thrust

reduction in pulsed jets, but also suggest possible mechanisms for thrust augmentation

in similar system configurations. Further research is necessary to determine whether

different geometric design, or careful control of the jet timing can lead to thrust

and efficiency augmentation for closely-spaced parallel pulsed jets. These results will

have significant implications for understanding the behavior of marine animals such

as salps, and for the design and control of future underwater robotic vehicles.
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Appendix A

Pressure distribution around a

translating and growing ellipsoid

This approach was inspired by the work of Munk on potential flow around ellip-

soids for airship design [52].

As given by Lamb, the velocity potential for a translating ellipsoid with principal

radii a in the ẑ direction, b in the ŷ direction, and c in the x̂ direction, moving at

velocity w in the +ẑ-direction is most efficiently described in ellipsoidal coordinates

[49]:

φ(x, y, z, t) = −z · w

2− α0︸ ︷︷ ︸
C(t)

· abc
∫ ∞
λ

dλ′

(a2 + λ′)3/2(b2 + λ′)1/2(c2 + λ′)1/2︸ ︷︷ ︸
α(λ,a,b,c;t)

. (A.1)

In Eq. A.1, λ is the ellipsoidal coordinate that grows perpendicular to the ellipsoid

with principal radii (c, b, a) along (x, y, z) respectively. As shorthand for the different

81



terms in Eq. A.1 I introduce the definitions:

C(t) =
w

2− α0

, (A.2)

α0 = α(0, a, b, c; t), and (A.3)

α(λ, a, b, c; t) = abc

∫ ∞
λ

dλ′

(a2 + λ′)3/2(b2 + λ′)1/2(c2 + λ′)1/2
(A.4)

It should be noted that x, y, z and λ are defined with respect to the moving

ellipsoid center. It therefore makes sense to consider the equivalent problem of the

ellipsoid in an unsteady free-stream flow with changing velocity −w(t) ẑ.

A point in ellipsoidal coordinates is defined by the variables (λ, µ, ν) such that

surfaces of constant λ are ellipsoids offset from the primary ellipsoid with principal

radii (c, b, a) in the (x, y, z) directions respectively. To convert a point (x, y, z) from

cartesian coordinates into ellipsoidal coordinates, the variables λ, µ, ν can be found

as the solutions of the third-order polynomial in k defined by:

z2

a2 + k
+

y2

b2 + k
+

x2

c2 + k
− 1 = 0.

Canonically, the solutions for k are sorted so that λ > µ > ν. With this sorting,

λ represents the spatial variable that increases perpendicular to the ellipsoid surface;

surfaces of constant λ take the form of ellipsoids with scaled principle radii. The

surface λ = 0 lays coincident with the surface of the ellipsoid (c, b, a).

For the case of an oblate ellipsoid of revolution (about the ẑ axis) with a < b,

b = c and x2 + y2 = r2, this equation reduces to:

z2

a2 + k
+

r2

b2 + k
− 1 = 0. (A.5)

Since I am only interested in the pressure on the surface (λ = 0) of such an

oblate, axisymmetric ellipsoid translating along ẑ, I can also use these assumptions
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to simplify Eq. A.1:

φ(x, y, z, t) = −z · C(w, a, b; t) · α(λ = 0, a, b; z, r, t). (A.6)

Furthermore, this simplification admits the following closed-form solution to the in-

tegral:

α(λ, a, b; t)

= ab2

∫ ∞
λ

dλ′

(a2 + λ′)3/2(b2 + λ)
(A.7)

= ab2

− π

(b2 − a2)3/2
+

2

(b2 − a2)(a2 + λ)1/2
+

2 tan−1
(√

a2+λ
b2−a2

)
(b2 − a2)3/2

 . (A.8)

The integral α relates to the Bessel added mass kz, for the ellipsoid moving in the

z-direction, according to [49]:

kz =
α0

2− α0

(A.9)

Using this relationship, it can be shown that the closed form solution Eq. A.8 ap-

proaches the expected limits as a → 0 and a → b, corresponding to a flat plate and

a sphere respectively.

From these simplifications, it is possible to explicitly calculate the pressure on

the surface of the vortex bubble using only the measured motion and growth of the

ellipsoid bounding the vortex bubble. To calculate the spatial derivative required by

the I equation (Eq. 3.4) I observe that the only spatially dependent terms in Eq. A.6

are C and α so that:

∇φ(t)
∣∣∣
Svb

= −ẑ·C(w, a, b; t)·α0(a, b, t)−z·C(w, a, b; t)·∂α
∂λ

∣∣∣
λ=0
·
(

ẑ
∂λ

∂z

∣∣∣
λ=0

+ r̂
∂λ

∂r

∣∣∣
λ=0

)
.
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The derivative ∂α/∂λ can be evaluated by applying the fundamental theorem of

calculus to Eq. A.7. The spatial derivatives of λ can then be calculated by implicitly

differentiating Eq. A.5 with k ≡ λ.

To calculate the time derivative of the velocity potential on the surface of the

ellipsoid, the chain rule can be applied to φ :

∂φ

∂t

∣∣∣
Svb

= −z·α(0, a, b; t)·
(
∂C

∂w
u̇vb +

∂C

∂a
ȧ+

∂C

∂b
ḃ

)
−z·C(w, a, b; t)·

(
∂α

∂a
ȧ+

∂α

∂b
ḃ

) ∣∣∣
λ=0

.

Here, derivatives with respect to w, a, and b can be evaluated using Eqs. A.2,A.3, and

A.8.
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Appendix B

A pressure-based model to

describe two-jet interaction

To model the interaction of two jets, I build off of the literature on vortex ring

interaction and consider the effects of mutual induction between the two develop-

ing rings. In order to describe leading-order effects of these interactions, I do not

consider the geometric deformations associated with the induction (for the times I

experimentally analyze, these deformations are minimal anyway). Instead, I focus on

the pressure fields that are set up by the forming vortex rings, which would establish

the typical vortex-ring flow fields. Using this pressure scale as a modifier for the

nozzle pressure explains why T should scale as ∆̃−6, as shown in Chapter 4.

Furthermore, as a leading-order approximation for the circulation produced by a

pulsed jet, I refer to the ‘slug-model’ of pulsed jet ejection [7], so that the circulation

produced is described by

Γ(t) = u2
j t.

See Fig. B-1 for a diagram of the system geometry. In cylindrical coordinates

(r, θ, z), a 3-dimensional vortex ring of radius a, centered at the origin, with circulation
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(a) (b)

Figure B-1: (a) Induction Geometry. (b) While the induced velocity is described by a complicated
equation, for the values of r that I am interested in (r/2a > 1.5), the induced velocity is well
approximated by the scaling (r/2a)−3.

Γ induces a flow field defined by the stream function [49]

ψ(r, z) = − Γ

2π
(r1 + r2) [K(λ)− E(λ)]

where

λ =
r2 − r1

r2 + r1

r2
1 = z2 + (r − a)2

r2
2 = z2 + (r + a)2

As shown in Fig. B-1, r1 is the closest distance of the vortex ring to the point (r, z),

and r2 is the farthest distance. E and K are complete elliptic integrals of the first

and second kind, respectively.

Since the two vortex rings are being formed simultaneously, I consider that their

mutual effects are dominant on the plane z = 0. In this case, the induced velocity

is antiparallel to ẑ, r1 = r − a, r2 = r + a, and λ = a/r. Rewriting the ring radius
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in terms of the nozzle diameter (a → D/2) and differentiating the stream function

yields a result for the velocity induced by a developing vortex ring.

uind(r, z = 0) =
1

r

∂ψ

∂r
ẑ

= −Γ(t)

π

1

r

[
K

(
D

2r

)
−

2− D
2r

2(1− D
2r

)
E

(
D

2r

)]
(−ẑ), (B.1)

Note that the time dependence is implicitly contained in the circulation, Γ since the

circulation is increasing as the nozzle continues to provide fluid.

For large values of r, when r/D � 1, the induced velocity reduces to that of a

dipole. Substituting the slug-model value of circulation Γ = u2
j t, the induced velocity

is approximately given by

uind(r, z = 0) ≈ −uj
3

32

ujt

D

(
D

r

)3

ẑ

This form indicates that the induced velocity is set by the jet velocity, scaled by

the nozzle stroke ratio ujt/D and a normalized distance r/D. While the asymptotic

behavior of uj is not formally valid for the near-field regime that I am studying

(1.5 < r/2a < 3), this form well approximates the true behavior, and reveals a simple

scaling that provides insight into the problem at hand.

Given the induced velocity field, the associated pressure that would be required

to establish such a field can be determined by the stagnation pressure:

pind ∼ ρu2
ind

∼ ρu2
j

(
ujt

D

)2(
D

∆

)6

Using this vortex-induction argument, I suggest that for a two-jet system, the addi-

tional pressure scale that is introduced by a second nozzle is given by the induced
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pressure

pind ∼ C∆̃−6.
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Appendix C

Additional data from two-nozzle

experiments
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Figure C-1: Time-series evolution of CV position and volume. This plot shows data calculated
from the wake of nozzle 1 at a few values of ∆̃.
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Figure C-2: Time-series evolution of vortex bubble geometry (a, b) and growth rates (ȧ, ḃ). Time
derivatives in these plots are calculated numerically. This plot shows data calculated from the wake
of nozzle 1 at a few values of ∆̃.
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Figure C-3: Non-normalized CV velocity, as a function of ∆̃. Blue data points are calculated from
wake measurements at nozzle 1. Red data points are calculated from nozzle 2.
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 ḃ
 (

m
m

/s
)

Figure C-4: Non-normalized vortex bubble geometry evolution (minor axis growth rate ȧ and major

axis growth rate ḃ), as a function of ∆̃. Blue data points are calculated from wake measurements at
nozzle 1. Red data points are calculated from nozzle 2.
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Figure C-5: Non-normalized average momentum and pressure contributions to thrust, as a function
of ∆̃. Blue data points are calculated from wake measurements at nozzle 1. Red data points are
calculated from nozzle 2.
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Figure C-6: Time-series contributions to total thrust - pressure contribution (left) and inertial
contribution (right). This plot shows data calculated from the wake of nozzle 1 at a few values of

∆̃.
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Figure C-7: Thrust calculated from the wake of nozzle 1 at different values of ∆̃.
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